
 1

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Chapter 1

c h a p t e r 1
Database
Fundamentals

This chapter introduces fundamental concepts and definitions regarding data-
bases, including properties common to databases, prevalent database models, a
brief history of databases, and the rationale for focusing on the relational
model.

C H A P T E R O B J E C T I V E S
In this chapter, the reader should:

Understand the properties of a database and terms commonly used to •
describe databases.

Identify the prevalent database models.•
Understand the history of databases.•
Explain why a focus on relational databases makes sense.•

01-ch01.indd 1 10/27/10 4:04:38 PM

2 DATA B A S E S DeMYSTiFieD

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Chapter 1

Properties of a Database
A database is a collection of interrelated data items that are managed as a single
unit. This definition is deliberately broad because there is so much variety
across the various software vendors that provide database systems. Microsoft
Access places the entire database in a single data file, so an Access database can
be defined as the file that contains the data items. Oracle Corporation defines
their database as a collection of physical files that are managed by an instance
of their database software product. A file is a collection of related records that
are stored as a single unit by an operating system. An instance is a copy of the
database software running in memory. Microsoft SQL Server and Sybase define
a database as a collection of data items that have a common owner, and mul-
tiple databases are typically managed by a single instance of the database man-
agement software. This can be quite confusing if you work with multiple
products because, for example, a database as defined by Microsoft SQL Server
and Sybase is exactly what Oracle calls a schema.

A database object is a named data structure that is stored in a database. The
specific types of database objects supported in a database vary from vendor to
vendor and from one database model to another. Database model refers to the way

Still Struggling
Given the unfortunately similar definitions of files and databases, how can we
make a distinction? A number of Unix operating system vendors call their
password file a “database,” yet database experts will quickly point out that it is not.
Clearly, we need a bit more rigor in our definitions. The answer lies in an under-
standing of certain characteristics or properties that databases possess that ordi-
nary files do not, including management by a database management system
(DBMS), layers of data abstraction, physical data independence, and logical data
independence. These characteristics are discussed in subsections of this chapter.

?
A database is a collection of interrelated data items that are managed as a single
unit.

01-ch01.indd 2 10/28/10 12:08:58 PM

Chapter 1 D ata b a s e F u n d a m e n ta l s 3

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Chapter 1

in which a database organizes its data to pattern the real world. The most common
database models are presented in “Prevalent Database Models,” later in this
chapter.

The properties of databases are discussed in the following subsections.

The Database Management System (DBMS)
The Database Management System (DBMS) is software provided by the data-
base vendor. Software products such as Microsoft Access, Oracle, Microsoft
SQL Server, Sybase, DB2, Ingres, and MySQL are all DBMSs. (If it seems odd
to you that the acronym used is “DBMS” instead of merely “DMS,” keep in mind
that the term “database” was originally written as two words and by convention
has become a single compound word.)

The DBMS provides all the basic services required to organize and maintain
the database, including the following:

Moving data to and from the physical data files as needed•	

Managing concurrent data access by multiple users including provisions •	

to prevent simultaneous updates from conflicting with one another

Managing transactions so that each transaction’s database changes are an •	

all-or-nothing unit of work. In other words, if the transaction succeeds, all
database changes made by it are recorded in the database; if the transac-
tion fails, none of the changes it made are recorded in the database

Support for a •	 query language, which is a system of commands that a data-
base user employs to retrieve data from the database

Provisions for backing up the database and recovering from failures•	

Security mechanisms to prevent unauthorized data access and modifi-•	

cation

Layers of Data Abstraction
What is unique about databases is that although they store the underlying data
only once, they can present multiple users of the data with multiple distinct
views of that data. These views are collectively called user views. A user in this
context is any person or application that signs onto the database for the pur-
pose of storing and/or retrieving data. An application is a set of computer pro-
grams designed to solve a particular business problem, such as an order-entry
system, a payroll-processing system, or an accounting system.

01-ch01.indd 3 10/26/10 4:18:58 PM

4 Data b a s e s DemystifieD

DemYstiFieD / Databases DemYstiFieD, second edition / andy Oppel / 799-0 / Chapter 1

In contrast to a database, when an electronic spreadsheet application such as
Microsoft Excel is used, all users must share a common view of the data that
must match the way the data is physically stored in the underlying data file. If
a user hides some columns in a spreadsheet, reorders the rows, and saves the
spreadsheet, the next user who opens it will have the data presented in the
manner in which the first user saved it. An alternative, of course, is for users to
save their own copy in separate physical files, but then as one user applies
updates, the other users’ data becomes out of date. With database systems, we
can present each user a view of the same data, but the views can be tailored to
the needs of the individual users, even though the views all come from one
commonly stored copy of the data. Because views store no actual data, they
automatically reflect any data changes made to the underlying database objects.
This is all possible through layers of abstraction, as shown in Figure 1-1.

TERMS: user Views
user views are abstractions provided by the Dbms that permit different users of
the database to use customized presentations of the same data that are tailored
to their exact needs. this property is one of the fundamental benefits that data-
bases provide over simple file systems.

Figure 1-1 • Database layers of abstraction

Internal Schema
(Logical Schema)

Logical Data
Independence

Physical Data
Independence

External
Layer

Logical
Layer

Physical
Layer

D
at

ab
as

e
Fi

le

D
at

ab
as

e
Fi

le

D
at

ab
as

e
Fi

le

D
at

ab
as

e
Fi

le

D
at

ab
as

e
Fi

le

View 1 View 2 View n

01-ch01.indd 4 10/26/10 4:18:59 PM

Chapter 1 D ata b a s e F u n d a m e n ta l s 5

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Chapter 1

The architecture shown in Figure 1-1 was first developed by ANSI/SPARC
(American National Standards Institute Standards Planning and Requirements
Committee) in the 1970s and quickly became a foundation for much of the
database research and development efforts that followed. Most modern DBMSs
follow this architecture, which is composed of three primary layers: the physi-
cal layer, the logical layer, and the external layer. The original architecture
included a conceptual layer, which has been omitted here because none of the
modern database vendors implemented it.

The Physical Layer
The physical layer contains the data files that hold all the data for the database.
Nearly all modern DBMSs allow the database to be stored in multiple data files,
which are usually spread out over multiple physical disk drives. With this ar-
rangement, the disk drives can work in parallel for maximum performance. A
notable exception is Microsoft Access, which stores the entire database in a
single physical file. This arrangement limits the ability of the DBMS to scale to
accommodate many concurrent users of the database, making it inappropriate
as a solution for large enterprise systems, while simplifying database use on a
single-user personal computer system.

The user of the database does not need to have any knowledge of how the
data is actually stored within these files, or even which file contains the data
item(s) of interest. In most organizations, a technician known as a database
administrator (DBA) handles the details of installing and configuring the data-
base software and data files and making the database available to the database
users. The DBMS works with the computer’s operating system to automati-
cally manage the data files, including all file opening, closing, reading, and
writing operations. The database user should not be required to refer to
physical data files when using a database, which is in sharp contrast with
spreadsheets and word processing, where the user must consciously save the
document(s) and choose filenames and storage locations. Many of the per-
sonal computer-based DBMSs are exceptions to this tenet because the user is
required to locate and open a physical file as part of the process of signing
onto the DBMS. In contrast, with server-based DBMSs (such as Oracle,
Sybase, Microsoft SQL Server, and so on), the physical files are managed
automatically, and the database user never needs to refer to them when using
the database.

01-ch01.indd 5 10/26/10 4:18:59 PM

6 Data b a s e s Demystified

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Chapter 1

The Logical Layer
The logical layer or logical model is the first of two layers of abstraction in the
database. We say this because the physical layer has a concrete existence in the
operating system files, whereas the logical layer exists only as abstract data
structures assembled from the physical layer as needed. The DBMS transforms
the data in the data files into a common structure. This layer is sometimes
called the schema, a term used for the collection of all the data items stored in
a particular database. (In some architectures, databases support multiple sche-
mas. In this case, schema refers to all data items owned by a particular user ac-
count.) Depending on the particular DBMS, this can be a set of 2-D
(two-dimensional) tables, a hierarchical structure similar to a company’s orga-
nization chart, or some other structure. The “Prevalent Database Models” sec-
tion later in this chapter describes the possible structures in more detail.

The External Layer
The external layer or external model is the second layer of abstraction in the
database. This layer is composed of the user views discussed earlier, which are
collectively called the subschema. This is the layer where users and application
programs that access the database connect and issue queries against the data-
base. Ideally, only the DBA deals with the physical layer, and only the DBA,
developers, and other IT staff deal with the logical layers. The DBMS handles
the transformation of selected items from one or more data structures in the
logical layer to form each user view. The user views in this layer can be pre-
defined and stored in the database for reuse, or they can be temporary items
that are built by the DBMS to hold the results of a single ad hoc database query
until no longer needed by the database user. By ad hoc, we mean a query that
was not preconceived and one that is not likely to be reused. Views are dis-
cussed in more detail in Chapter 2.

Physical Data Independence
The ability to alter the physical file structure of a database without disrupting
existing users and processes is known as physical data independence. As shown
earlier in Figure 1-1, it is the separation of the physical layer from the logical
layer that provides physical data independence in a DBMS. It is essential to
understand that physical data independence is not a “have or have not” property,
but rather one where a particular DBMS might have more or less data indepen-
dence than another. The measure, sometimes called the degree of physical data
independence, is how much change can be made in the file system without

01-ch01.indd 6 10/26/10 4:18:59 PM

Chapter 1 D ata b a s e F u n D a m e n ta l s 7

DemYstiFieD / Databases DemYstiFieD, second edition / andy Oppel / 799-0 / Chapter 1

impacting the logical layer. Prior to systems that offered data independence,
even the slightest change to the way data was stored required the programming
staff to make changes to every computer program that used the data, an expen-
sive and time-consuming process.

All modern computer systems have some degree of physical data indepen-
dence. For example, a spreadsheet on a personal computer will continue to work
properly if copied from a hard disk to a USB thumb drive or if burned onto a CD.
The fact that the performance (speed) of these devices varies is not the point, but
rather that the devices have entirely different physical construction. Yet the oper-
ating system on the personal computer will automatically handle the differences
and present the data in the file to the application (that is, the spreadsheet pro-
gram, such as Microsoft Excel), and therefore to the user, in exactly the same way.
However, on most personal systems, users must still remember where they placed
the file so they can locate it when they need it again.

DBMSs expand greatly on the physical data independence provided by the
computer system in that they allow database users to access database objects (for
example, tables in a relational DBMS) without having to reference the physical
data files in any way. The DBMS catalog keeps track of where the objects are
physically stored. Here are some examples of physical changes that may be made
in a data-independent manner:

Moving a database data file from one device or directory to another•	

Splitting or combining database data files•	

Renaming database files•	

Moving a database object from one data file to another•	

Adding new database objects or data files•	

Note that we have made no mention of deleting things. It should be obvious
that deleting a database object will cause anything that uses that object to fail.
However, everything else should be unaffected.

TERMS: Physical Data independence
Physical data independence is the ability to alter the physical file structure of a
database without disrupting existing users and processes; such as moving data-
base objects from one physical file to another.

01-ch01.indd 7 10/26/10 4:18:59 PM

8 Data b a s e s DemystifieD

DemYstiFieD / Databases DemYstiFieD, second edition / andy Oppel / 799-0 / Chapter 1

Logical Data Independence
The ability to make changes to the logical layer without disrupting existing
users and processes is called logical data independence. Figure 1-1, earlier in the
chapter, shows that it is the transformation between the logical layer and the
external layer that provides logical data independence. As with physical data
independence, there are degrees of logical data independence. It is important
to understand that most logical changes also involve a physical change. For
example, you cannot add a new database object (such as a table in a relational
DBMS) without physically storing the data somewhere; hence, there is a cor-
responding change in the physical layer. Moreover, deletion of objects in the
logical layer will cause anything that uses those objects to fail, but should not
affect anything else.

Here are some examples of changes in the logical layer that can be safely
made thanks to logical data independence:

Adding a new database object•	

Adding data items to an existing object•	

Any change where a view can be placed in the external model that re-•	

places (and processes the same as) the original object in the logical layer,
such as combining or splitting existing objects

Prevalent Database Models
A database model is essentially the architecture that the DBMS uses to store
objects within the database and to relate them to one another. (Be careful not
to confuse the term “database model” with the term data model, which refers
to the design of a particular database. You may find it helpful to think of data-
base models as architectures used by the DBMS to store data, while data mod-
els are designs of specific databases such as order entry and payroll systems.)

TERMS: Logical Data independence
logical data independence is the ability to make changes to the logical layer with-
out disrupting existing users and processes, such as adding a new database ob-
ject or adding a column to an existing database table.

01-ch01.indd 8 10/26/10 4:19:00 PM

Chapter 1 D ata b a s e F u n D a m e n ta l s 9

DemYstiFieD / Databases DemYstiFieD, second edition / andy Oppel / 799-0 / Chapter 1

The most prevalent database models are presented here in the order of their
evolution. A brief history of relational databases appears in the next section to
help put things in a chronological perspective.

Flat Files
Flat files are “ordinary” operating system files in that records in the file contain
no information to communicate the file structure or any relationship among
the records to the application that uses the file. Any information about the
structure or meaning of the data in the file must be included in each applica-
tion that uses the file or must be known to each human who reads the file. In
essence, flat files are not databases at all because they do not meet any of the
criteria previously discussed. However, it is important to understand them for
two reasons. First, flat files are often used to store database information. In
this case, the operating system is still unaware of the contents and structure
of the files, but the DBMS has metadata that allows it to translate between
the flat files in the physical layer and the database structures in the logical
layer. Metadata, which literally means “data about data,” is the term used for
the information that the database stores in its catalog to describe the data
stored in the database and the relationships among the data. The metadata for
a customer, for example, might include a list of all the data items collected
about the customer, along with the length, minimum and maximum data
values, and a brief description of each data item. Second, flat files existed
before databases, and the earliest database systems evolved from the flat file
systems that preceded them.

still struggling
a bit more elaboration may help you understand the difference between data-
base models and data models. a database model defines the architecture used
by the Dbms much like a building code contains the regulations for construct-
ing buildings. a data model, on the other hand, is a description of the design of
an individual database, using both diagrams and text definitions, much like the
blueprint for an individual building.

?

01-ch01.indd 9 10/26/10 4:19:00 PM

10 Data b a s e s Demystified

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Chapter 1

Figure 1-2 shows a sample flat file system, a subset of the data in the Micro-
soft Northwind sample database in this case. Northwind Traders is a supplier of
international food items. Keep in mind that the column titles (Customer ID,
Company Name, and so on) are included for illustration purposes only—only
the data records would be stored in the actual files. Customer data is stored in
a Customer file, with each record representing a Northwind customer. Each
employee of Northwind has a record in the Employee file, and each product
sold by Northwind has a record in the Product file. Order data (orders placed
with Northwind by its customers) is stored in two other flat files. The Order
file contains one record for each customer order with data about the orders,
such as the customer ID of the customer who placed the order and the name
of the employee who accepted the order from the customer. The Order Detail
file contains one record for each line item on an order (an order can contain
multiple line items, one for each product ordered), including data such as the
unit price and quantity.

An application program is a unit of computer program logic that performs a
particular function within an application system. Northwind has an application
program that prints a listing of all the orders. This application must correlate

Figure 1-2 • Flat file order system

Customer File

Product File

Order File

Order Detail File

Employee File

Customer ID Company Name

Title

Job TitleContact Last NameContact First Name

Employee ID First Name Last Name

Order ID

Product Code Quantity Per UnitCategoryProduct NameProduct ID

QuantityUnit PriceProduct IDOrder ID

Shipping FeeShipped DateOrder DateEmployee IDCustomer ID

26
6

Accounting Assistant
Purchasing Manager

Liu
Pérez-Olaeta

Run
Francisco

Company Z
Company F

Hellung-Larsen
Thrope

Anne
Steven

9
5

Vice President, SalesCenciniAndrew2

8

50 – 300 g pkgs.
10 pkgs.
12 – 12 oz cans
24 – 4 oz tins
12 – 1 lb pkgs.
36 boxes

Dried Fruit & Nuts
Candy
Soups
Canned Meat
Dried Fruit & Nuts
Oil

Northwind Traders Dried Apples
Northwind Traders Chocolate
Northwind Traders Clam Chowder
Northwind Traders Crab Meat
Northwind Traders Dried Pears
Northwind Traders Olive Oil

51
48
41
40

7
5

14
20

2
21
15

$53.00
$30.00
$12.75
$18.40
$9.65

51
7

48
40
41

5

79
79
56
51
51
51

79
56
51

6
6

26

2
2
9

6/23/2010
4/3/2010
4/5/2010

6/23/2010
4/3/2010
4/5/2010

$0.00
$0.00

$60.00

Sales Representative
Sales Manager

$21.35

NWTO-5

NWTDFN-51
NWTCA-48
NWTSO-41
NWTCM-40
NWTDFN-7

List Price

$53.00
$12.75
$9.65

$18.40
$30.00
$21.35

01-ch01.indd 10 10/26/10 4:19:01 PM

Chapter 1 D ata b a s e F u n d a m e n ta l s 11

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Chapter 1

the data between the five files by reading an order and performing the follow-
ing steps:

Use the customer ID to find the name of the customer in the Customer 1.	
file.

Use the employee ID to find the name of the related employee in the 2.	
Employee file.

Use the order ID to find the corresponding line items in the Order Detail 3.	
file.

For each line item, use the product ID to find the corresponding product 4.	
name in the Product file.

This is rather complicated given that we are just trying to print a simple list-
ing of all the orders, yet this is the best possible data design for a flat file
system.

One alternative design would be to combine all the information into a single
data file. Although this would greatly simplify data retrieval, consider the rami-
fications of repeating all the customer data on every single order line item. You
might not be able to add a new customer until they have an order ready to
place. Also, if someone deletes the last order for a customer, you would lose all
the information about the customer. But the worst situation is when customer
information changes, because you have to find and update every record where
the customer data is repeated. We will explore these issues much more deeply
when we explore logical database design in Chapter 7.

Another alternative approach often used in flat file–based systems is to com-
bine closely related files, such as the Order file and Order Detail file, into a
single file, with the line items for each order following each order header record,
and a Record Type data item added to help the application distinguish between
the two types of records. Although this approach makes correlating the order
data easier, it does so by adding the complexity of mixing two different kinds
of records into the same file, so there is no net gain in either simplicity or faster
application development.

Overall, the worst problem with the flat file approach is that the definition
of the contents of each file and the logic required to correlate the data from
multiple flat files have to be included in every application program that requires
those files, thus adding to the expense and complexity of the application pro-
grams. It was this problem that provided computer scientists of the day with
the incentive to find a better way to organize data.

01-ch01.indd 11 10/26/10 4:19:01 PM

12 Data b a s e s Demystified

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Chapter 1

The Hierarchical Model
The earliest databases followed the hierarchical model. The model evolved
from the file systems that the databases replaced, with records arranged in a
hierarchy much like an organization chart. Each file from the flat file system
became a record type, or node in hierarchical terminology, but we will use the
term record here for simplicity. Records were connected using pointers that
contained the address of the related record. Pointers told the computer system
where the related record was physically located, much as a street address di-
rects us to a particular building in a city or a URL directs us to a particular web
page or file on the Internet. Each pointer establishes a parent-child relationship,
also called a one-to-many relationship, where one parent may have many chil-
dren, but each child may have only one parent. This is similar to the situation
in a traditional business organization, where each manager may have many
employees as direct reports, but each employee may have only one manager.
The obvious problem with the hierarchical model is that there is data that does
not exactly fit this strict hierarchical structure, such as an order that must have
the customer who placed the order as one parent and the employee who ac-
cepted the order as another. Data relationships are presented in more detail in
Chapter 2. The most popular hierarchical database was Information Manage-
ment System (IMS) from IBM.

Figure 1-3 shows the hierarchical structure of the hierarchical model for the
Northwind database. You will recognize the Customer, Employee, Product,
Order, and Order Detail record types introduced previously. Comparing the
hierarchical structure with the flat file system shown in Figure 1-2, note that
the Employee and Product records are
shown in the hierarchical structure
with dotted lines because they cannot
be connected to the other records via
pointers. These illustrate the most
severe limitation of the hierarchical
model that was the main reason for its
early demise: no record may have more
than one parent. Therefore, we cannot
connect the Employee records with the
Order records because the Order
records already have the Customer
record as their parent. Similarly, the
Product records cannot be related to

Figure 1-3 • Hierarchical model structure for
Northwind

Customer

Product

Employee

Order Detail

Order

01-ch01.indd 12 10/26/10 4:19:01 PM

Chapter 1 D ata b a s e F u n d a m e n ta l s 13

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Chapter 1

the Order Detail records because the Order Detail records already have the
Order record as their parent. Database technicians had to work around this
shortcoming either by relating the “extra” parent records in application pro-
grams, much as was done with flat file systems, or by repeating all the records
under each parent, which of course was very wasteful of then-precious disk
space. Neither of these was really an acceptable solution, so IBM modified IMS
to allow for multiple parents per record. The resultant database model was
dubbed the “Extended Hierarchical” model, which closely resembled the net-
work database model in function, discussed in the next section.

Figure 1-4 shows the contents of selected records within the hierarchical
model design for Northwind. For simplicity, only the identifiers of the records
are shown, but a look back at Figure 1-2 should make the entire contents of
each record clear to you. The record for Customer 6 has a pointer to its first
order (ID 56), and that order has a pointer to the next order (ID 79). We know
that Order 79 is the last order for the customer because it does not have a
pointer to a subsequent order. Looking at the next layer in the hierarchy, Order
56 has a pointer to its only Order Detail record (for Product 48), while Order
79 has a pointer to its first Order Detail record (for Product 7), and that record
has a pointer to the next detail record (for Product 51), and so forth. There is
one additional important distinction between the flat file system and the hier-
archical—the key (identifier) of the parent record is removed from the child
records in the hierarchical model because the pointers handle the relationships
among the records. Therefore, the Customer ID and Employee ID are removed
from the Order record, and the Product ID is removed from the Order Detail
record. Leaving them in is not a good idea because this could allow contradictory

Figure 1-4 • Hierarchical model record contents for Northwind

Customer:
6

(to next customer)

Order:
56

Order:
79

Order Detail:
Product 48

Order Detail:
Product 7

Order Detail:
Product 51

(from previous customer)

01-ch01.indd 13 10/26/10 4:19:01 PM

14 Data b a s e s Demystified

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Chapter 1

information in the database, such as an order that is pointed to by one customer
and yet contains the ID of a different customer.

The Network Model
The network database model evolved at around the same time as the hierarchi-
cal database model. A committee of industry representatives was formed to
essentially build a better mousetrap. A cynic would say that a camel is a horse
that was designed by a committee, and that may be accurate in this case. The
most popular database based on the network model was the Integrated Data-
base Management System (IDMS), originally developed by Cullinane (later
renamed Cullinet). The product was enhanced with relational extensions,
named IDMS/R, and eventually sold to Computer Associates.

As with the hierarchical model, record types (or simply “records”) depict
what would be separate files in a flat file system, and those records are related
using one-to-many relationships, called owner-member relationships or sets in
network model terminology. We’ll stick with the terms parent and child, again
for simplicity. As with the hierarchical model, physical address pointers are
used to connect related records, and any identification of the parent record(s)
is removed from each child record to avoid possible inconsistencies. In contrast
with the hierarchical model, the relationships are named so the programmer
can direct the database to use a particular relationship to navigate from one
record to another in the database, thus allowing a record type to participate as
the child in multiple relationships. The network model provided greater flexi-
bility, but as is often the case with computer systems, at the expense of greater
complexity.

The network model structure for
Northwind, as shown in Figure 1-5, has
all the same records as the equivalent
hierarchical model structure that
appeared in Figure 1-3. By convention,
the arrowhead on the lines points from
the parent record to the child record.
Note that the Customer and Employee
records now have solid lines in the struc-
ture diagram because they can be directly
implemented.

In the network model contents exam-
ple shown in Figure 1-6, each parent-child

Figure 1-5 • Network model structure for
Northwind

Customer

Product

Employee

Order Detail

Order

01-ch01.indd 14 10/26/10 4:19:01 PM

Chapter 1 D ata b a s e F u n d a m e n ta l s 15

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Chapter 1

relationship is depicted with a different type of line, illustrating that each has a
different name. This difference is important because it points out the largest
downside of the network model, which is complexity. Instead of a single path
that may be used for processing the records, there are now many paths. For
example, if we start with the record for Employee 2 and use it to find the first
order (ID 56), we land in the chain of orders that belong to Customer 6. We
happen to land on the first order belonging to Customer 6, but this is merely by
chance—had there been orders for Customer 6 that were taken by other employ-
ees, we could have landed in the middle of the chain. To find all the other orders
for this customer, there must be a way to work forward from where we are to
the end of the chain and then wrap around to the beginning and forward from
there until we return to the order from which we started. It is to satisfy this
processing need that all pointer chains in network model databases are circular.
As you might imagine, these circular pointer chains can easily result in an infi-
nite loop (that is, a process that never ends) should database users not keep
careful track of where they are in the database and how they got there.
The structure of the Web loosely parallels a network database in that each web
page has links to other related web pages, and circular references are not
uncommon.

Figure 1-6 • Network model record contents for Northwind

Customer:
6

(to next
customer)

Order:
56

Order:
79

Order Detail:
Product 28

Employee:
2

(Other
Employee
2 Orders)

Order Detail:
Product 7

Order Detail:
Product 51

(from previous
customer)

01-ch01.indd 15 10/26/10 4:19:02 PM

16 Data b a s e s DemystifieD

DemYstiFieD / Databases DemYstiFieD, second edition / andy Oppel / 799-0 / Chapter 1

The process of navigating through a network database was called “walking
the set” because it involved choosing paths through the database structure
much like choosing walking paths through a forest when there can be multiple
ways to get to the same destination. Without an up-to-date map, it is easy to
get lost, or worse yet, to find a dead end where you cannot get to the desired
destination record. The complexity of this model and the expense of the small
army of technicians required to maintain it were key factors in its eventual
demise.

The Relational Model
In addition to complexity, the network and hierarchical database models share
another common problem—they are inflexible. You must follow the precon-
ceived paths through the data in order to process the data efficiently. Ad hoc
queries, such as finding all the orders shipped in a particular month, could re-
quire scanning the entire database to find them all. Computer scientists were
still looking for a better way. Rarely in the history of computers has a develop-
ment been truly revolutionary, but the research work of Dr. E.F. Codd that led
to the relational model was clearly just that.

The relational model is based on the notion that any preconceived path
through a data structure is too restrictive a solution, especially in light of ever-
increasing demands to support ad hoc requests for information. Database users
simply cannot think of every possible use of the data before the database is
created; therefore, imposing predefined paths through the data merely creates
a “data jail.” The relational model therefore provides the ability to relate records
as needed rather than predefining them when the records are first stored in the
database. Moreover, the relational model is constructed such that queries can
work with sets of data (for example, all the customers who have an outstanding
balance) rather than one record at a time, as with the network and hierarchical
models.

TERMS: relational Model
the relational model is a database model that presents data in 2-D tables using
common data to link tables. For example, a Customer ID stored in an order table
can be used to link orders to the Customer table that contains information about
the customers that placed the orders.

01-ch01.indd 16 10/26/10 4:19:02 PM

Chapter 1 D ata b a s e F u n d a m e n ta l s 17

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Chapter 1

The relational model presents data in familiar 2-D tables, much like a spread-
sheet does. Unlike with a spreadsheet, the data is not necessarily stored in tabu-
lar form, and the model also permits combining (joining in relational terminology)
tables to form views, which are also presented as 2-D tables. In short, it follows
the ANSI/SPARC model and therefore provides healthy doses of physical and
logical data independence. Instead of linking related records together with
physical address pointers, as is done in the hierarchical and network models, a
common data item is stored in each table, just as was done in flat file systems.

Figure 1-7 shows the relational model design for Northwind. A look back at
Figure 1-2 will confirm that each file in the flat file system has been mapped
to a table in the relational model. As you will learn in Chapter 6, this one-to-
one correspondence between flat files and relational tables will not always hold
true, but it is quite common. In Figure 1-7, lines are drawn between the tables
to show the one-to-many relationships, with the single-line end denoting the
“one” side and the line end that splits into three parts (called a “crow’s foot”)
denoting the “many” side. For example, merely by inspecting the lines that con-
nect these tables, you can see that “one” customer is related to “many” orders
and that “one” order is related to “many” order details. The diagramming tech-
nique shown here, called the entity-relationship diagram (ERD), will be covered
in more detail in Chapter 7.

In Figure 1-8, three of the five tables have been represented with sample data
in selected columns. In particular, note that the Customer ID column is stored in
both the Customer table and the Order table. When the customer ID of a row in
the Order table matches the customer ID of a row in the Customer table, you
know that the order belongs to that particular customer. Similarly, the Employee ID

Figure 1-7 • Relational model structure for Northwind

Customer

Product

Employee

Order Detail

Order

01-ch01.indd 17 10/26/10 4:19:02 PM

18 Data b a s e s Demystified

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Chapter 1

column is stored in both the Employee and Order tables to indicate the employee
who accepted each order.

The elegant simplicity of the relational model and the ease with which peo-
ple can learn and understand it has been the main factor in its universal accep-
tance. The relational model is the main focus of this book because it is ubiquitous
in today’s information technology systems and will likely remain so for many
years to come.

The Object-Oriented Model
The object-oriented (OO) model actually had its beginnings in the 1970s, but
it did not see significant commercial use until the 1990s. This sudden emer-
gence came from the inability of then-existing RDBMSs (Relational Database
Management Systems) to deal with complex data types such as images, com-
plex drawings, and audio-video files. The sudden explosion of the Internet and
the Web created a sharp demand for mainstream delivery of complex data.

An object is a logical grouping of related data and program logic that repre-
sents a real-world thing, such as a customer, employee, order, or product. Indi-
vidual data items, such as customer ID and customer name, are called variables
in the OO model and are stored within each object. In OO terminology, a
method is a piece of application program logic that operates on a particular
object and provides a finite function, such as checking a customer’s credit limit
or updating a customer’s address. Among the many differences between the
OO model and the models already presented, the most significant is that vari-
ables may only be accessed through methods. This property is called
encapsulation.

Figure 1-8 • Relational table contents for Northwind

Customer Table

Order Table

Employee Table

Customer ID Company Name Job TitleContact Last NameContact First Name

26
6

Accounting Assistant
Purchasing Manager

Liu
Pérez-Olaeta

Run
Francisco

Company Z
Company F

Order ID Shipping FeeShipped DateOrder DateEmployee IDCustomer ID

79
56
51

6
6

26

2
2
9

6/23/2010
4/3/2010
4/5/2010

6/23/2010
4/3/2010
4/5/2010

$0.00
$0.00

$60.00

TitleEmployee ID First Name Last Name

Hellung-Larsen
Thrope

Anne
Steven

9
5

Vice President, SalesCenciniAndrew2

Sales Representative
Sales Manager

01-ch01.indd 18 10/26/10 4:19:03 PM

Chapter 1 D ata b a s e F u n d a m e n ta l s 19

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Chapter 1

The strict definition of object used here applies only to the OO model. The
general term database object, as used earlier in this chapter, refers to any named
item that might be stored in a non-OO database (for example, a table, index,
or view). As OO concepts have found their way into relational databases, so has
the terminology, although often with less precise definitions.

Figure 1-9 shows the Customer object as an example of OO implementa-
tion. The circle of methods around the central core of variables is to remind us
of encapsulation. In fact, you can think of an object much like an atom with an
electron field of methods and a nucleus of variables. Each customer for North-
wind would have its own copy of the object structure, called an object instance,
much as each customer has a copy of the customer record structure in the flat
file system.

At a glance, the OO model looks horribly inefficient because it seems that
each instance requires that the methods and the definition of the variables be
redundantly stored. However, this is not at all the case. Objects are organized
into a class hierarchy so that the common methods and variable definitions need
only be defined once and then inherited by other members of the same class.

Figure 1-9 • The anatomy of an object

Company ID
Company Name
Contact Name
Address
City
Country
Phone
...

Add Customer

Update
Contact

Update
Address

Print
Mailing Label

Change
Status

List
Customer

Check
Credit Limit

Update
Contact

Customer Object

MethodsVariables

01-ch01.indd 19 10/26/10 4:19:03 PM

20 D ata b a s e s Demystified

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Chapter 1

OO concepts have such benefit that they have found their way into nearly
every aspect of modern computer systems. For example, the Microsoft Win-
dows Registry has a class hierarchy.

The Object-Relational Model
Although the OO model provided some significant benefits in encapsulating
data to minimize the effects of system modifications, the lack of ad hoc query
capability has relegated it to a niche market where complex data is required,
but ad hoc querying is not. However, some of the vendors of relational data-
bases noted the significant benefits of the OO model and added object-like
capability to their relational DBMS products with the hopes of capitalizing on
the best of both models. The original name given to this type of database was
“universal database,” and although the marketing folks loved the term, it never
caught on in technical circles, so the preferred name for the model became
object-relational (OR). Through evolution, the Oracle, DB2, and Informix da-
tabases can all be said to be OR DBMSs to varying degrees.

To fully understand the OR model, a more detailed knowledge of the rela-
tional and OO models is required.

A Brief History of Databases
Space exploration projects led to many significant developments in the science
and technology industries, including information technology. As part of the
NASA Apollo moon project, North American Aviation (NAA) built a hierar-
chical file system named Generalized Update Access Method (GUAM) in 1964.
IBM joined NAA to develop GUAM into the first commercially available hier-
archical model database, called Information Management System (IMS), re-
leased in 1966.

Also in the mid-1960s, General Electric internally developed the first data-
base based on the network model, under the direction of prominent computer
scientist Charles W. Bachman, and named it Integrated Data Store (IDS). In
1967, the Conference on Data Systems Languages (CODASYL), an industry
group, formed the Database Task Group (DBTG) and began work on a set of
standards for the network model. In response to criticism of the “single parent”
restriction in the hierarchical model, IBM introduced a version of IMS that
circumvented the problem by allowing records to have one “physical” parent
and multiple “logical” parents.

01-ch01.indd 20 10/26/10 4:19:03 PM

Chapter 1 D ata b a s e F u n d a m e n ta l s 21

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Chapter 1

In June 1970, E.F. (Ted) Codd, an IBM researcher (later an IBM fellow),
published a research paper titled “A Relational Model of Data for Large Shared
Data Banks” in Communications of the ACM, the Journal of the Association for
Computing Machinery, Inc. The publication can be easily found on the Internet.
In 1971, the CODASYL DBTG published their standards, which were over
three years in the making. This began five years of heated debate over which
model was the best.

The CODASYL DBTG advocates argued the following:

The relational model was too mathematical.•	

An efficient implementation of the relational model could not be built.•	

Application systems need to process data one record at a time.•	

The relational model advocates argued the following:

Nothing as complicated as the DBTG proposal could possibly be the cor-•	

rect way to manage data.

Set-oriented queries were too difficult in the DBTG language.•	

The network model had no formal underpinnings in mathematical theory.•	

The debate came to a head at the 1975 ACM SIGMOD (Special Interest
Group on Management of Data) conference. Ted Codd and two others debated
against Charles Bachman and two others over the merits of the two models. At
the end, the audience was more confused than beforehand. In retrospect, this hap-
pened because every argument proffered by the two sides was completely correct!
However, interest in the network model waned markedly in the late 1970s. It was
the evolution of database and computer technology that followed that proved the
relational model was the better choice, including these significant developments:

Query languages such as SQL emerged that were not so mathematical.•	

Experimental implementations of the relational model proved that rea-•	

sonable efficiency could be achieved, although never as efficient as an
equivalent network model database. Also, computer systems continued to
drop in price, and flexibility became more important than efficiency.

Provisions were added to the SQL language to permit processing of a set •	

of data using a record-at-a-time approach.

Advanced tools made the relational model even easier to use.•	

Codd’s research led to the development of a new discipline in mathemat-•	

ics known as relational calculus.

01-ch01.indd 21 10/26/10 4:19:03 PM

22 Data b a s e s Demystified

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Chapter 1

In the mid-1970s, database research and development was at full steam. A
team of 15 IBM researchers in San Jose, California, under the direction of Frank
King, worked from 1974 to 1978 to develop a prototype relational database
called System R. System R was built commercially and became the basis for HP
ALLBASE and IDMS/SQL. Larry Ellison and a company that later became
known as Oracle independently implemented the external specifications of
System R. It is now common knowledge that Oracle’s first customer was the
CIA. With some rewriting, IBM developed System R into SQL/DS and then
into DB2, which remains their flagship database to this day.

A pickup team of University of California, Berkeley, students under the
direction of Michael Stonebraker and Eugene Wong worked from 1973 to 1977
to develop the Ingres DBMS. Ingres also became a commercial product and was
quite successful. It is still available today as an open source solution.

In 1976, Dr. Peter Chen presented the entity-relationship (ER) model. His
work bolstered the modeling weaknesses in the relational model and became
the foundation of many modeling techniques that followed. If Ted Codd is
considered the “father” of the relational model, then we must consider Peter
Chen the “father” of the ER diagram. We explore ER diagrams in Chapter 7.

Sybase, which had a successful RDBMS deployed on Unix servers, entered
into a joint agreement with Microsoft to develop the next generation of Sybase
(to be called System 10) with a version available on Windows servers. For rea-
sons not publicly known, the relationship soured before the products were com-
pleted, but each party walked away with all the work developed up to that
point. Microsoft finished the Windows version and marketed the product as
Microsoft SQL Server, whereas Sybase rushed to market with Sybase System 10.
The products were so similar that instructors for Microsoft were known to use
the more mature Sybase manuals in class rather than first-generation Microsoft
documentation. The product lines have diverged considerably over the years, but
Microsoft SQL Server’s Sybase roots are still evident in the product.

Relational technology took the market by storm in the 1980s. Object-oriented
databases, which first appeared in the 1970s, were also commercially successful
during the 1980s. In the 1990s, object-relational systems emerged, with Informix
being the first to market, followed relatively quickly by Oracle and IBM.

Not only did the relational technology of the day move around, but the peo-
ple did also. Michael Stonebraker left UC Berkeley to found Illustra, an object-
relational database vendor, and became chief science officer of Informix when it
merged with Illustra. He is currently an adjunct professor at MIT, where he is
involved in the development of a number of advanced database systems projects.
Bob Epstein, who worked on the Ingres project with Stonebraker, moved to

01-ch01.indd 22 10/26/10 4:19:03 PM

Chapter 1 D ata b a s e F u n d a m e n ta l s 23

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Chapter 1

the commercial company along with the Ingres product. From there he went to
Britton-Lee (subsequently absorbed by NCR) to work on early database machines
(computer systems with hardware and software specialized to run only data-
bases) and then to start up Sybase, where he was the chief science officer for a
number of years. Database machines, incidentally, died on the vine because they
were so expensive compared with the combination of an RDBMS running on a
general-purpose computer system. However, several vendors, including Oracle,
Teradata, and Netezza, currently market database machines that use specialized
software for running databases, but with industry-standard hardware. The San
Francisco Bay Area was an exciting place for database technologists in that era,
because all the great relational products started there, more or less in parallel,
with the explosive growth of “Silicon Valley.” Others have moved on, but Oracle
and Sybase are still largely based in the Bay Area.

Why Focus on Relational?
The remainder of this book will focus on the relational model, with some cov-
erage of the object-oriented and object-relational models. Aside from the rela-
tional model being the most prevalent of all the database models in modern
business systems, there are other important reasons for this focus, especially for
those learning about databases for the first time:

Definition, maintenance, and manipulation of data storage structures •	

is easy.

Data is retrieved through simple ad hoc queries.•	

Data is well protected.•	

Well-established ANSI (American National Standards Institute) and ISO •	

(International Organization for Standardization) standards exist.

There are many vendors from which to choose.•	

Conversion between vendor implementations is relatively easy.•	

RDBMSs are mature and stable products.•	

Summary
In this chapter, you learned the properties of databases, terms used to describe
databases, the prevalent database models, a brief history of databases, and the
reasoning behind a focus on relational databases. In Chapter 2, we will explore
the components of relational databases.

01-ch01.indd 23 10/26/10 4:19:03 PM

24 Data b a s e s Demystified

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Chapter 1

Quiz
Choose the correct responses in each of the multiple-choice questions. Note that
there may be more than one correct response to each question.

Some of the properties of a database are1.	
It provides less logical data independence than the file systems it replaced.A.	
It provides both physical and logical data independence.B.	
Data items are stored exactly the way they are presented to the database user.C.	
It provides layers of database abstraction.D.	
Databases are always managed by a Database Management System.E.	

Flat file systems:2.	
Require the user or application program to relate one file to anotherA.	
Require the user or application to know the contents of each fileB.	
Are not really databases by themselves, even though some vendors call them C.	
that
Provide no logical data independence when used directly by application D.	
programs
Can be used to store the database objects for a databaseE.	

The hierarchical database model:3.	
Stores data and methods together in the databaseA.	
Was first developed by Dr. Peter ChenB.	
In its pure form, permits only one parent for any given recordC.	
Connects data in a hierarchical structure using physical address pointersD.	
Allows the processing of sets of database recordsE.	

The network database model:4.	
Allows the processing of sets of database recordsA.	
Allows multiple parents for any given database recordB.	
Was first proposed by Dr. E.F. CoddC.	
Is known for its simplicity of useD.	
Connects database records using physical address pointersE.	

The object-oriented model:5.	
Was first invented in the 1980sA.	
Stores data as variables along with application logic modules called “methods”B.	
Restricts access to variables through encapsulationC.	
Provides for freeform ad hoc querying of variablesD.	
Provides better support for complex data types than the relational modelE.	

01-ch01.indd 24 10/26/10 4:19:03 PM

Chapter 1 D ata b a s e F u n d a m e n ta l s 25

DeMYSTiFieD / Databases DeMYSTiFieD, Second Edition / Andy Oppel / 799-0 / Chapter 1

The physical layer of the ANSI/SPARC model:6.	
Provides physical data independenceA.	
Contains the physical files that comprise the databaseB.	
Contains files that are read and written by the DBMS independently of the C.	
computer’s operating system
Is normally invisible to the database userD.	
Supplies data to the logical layerE.	

The logical layer of the ANSI/SPARC model:7.	
Contains database objects that are assembled by the DBMS from data in the A.	
physical layer
Contains the database schemaB.	
Lies between the physical and external layersC.	
Provides logical data independenceD.	
Is referenced by the external layerE.	

According to advocates of the relational model, the problems with the CODASYL 8.	
model are

Set-oriented queries are too difficult.A.	
An efficient implementation cannot be built.B.	
It is too mathematical.C.	
It is too complicated.D.	
It lacks generally accepted standards.E.	

According to the advocates of the network model, the problems with the 9.	
relational model are

An efficient implementation cannot be built.A.	
Record-at-a-time processing is poorly supported.B.	
It has no formal mathematical underpinnings.C.	
It is too complicated.D.	
It lacks generally accepted standards.E.	

Important historic events in database development are10.	
Early relational databases were built by both IBM and UC Berkeley.A.	
Nearly all the commercial relational databases are descendents of either System R B.	
or Ingres.
GUAM was the first commercially available database.C.	
Dr. E.F. Codd published his famous research paper in 1970.D.	
General Electric’s IDS was the first known network database.E.	

01-ch01.indd 25 10/26/10 4:19:03 PM

