
Soyinka

Effectively deploy and maintain Linux
and other Free and Open Source Software
(FOSS) on your servers or entire network
using this practical resource. Linux
Administration: A Beginner’s Guide, Sixth
Edition provides up-to-date details on the
latest Linux distributions, including
Fedora, Red Hat Enterprise Linux, CentOS,
Debian, and Ubuntu. Learn how to install
and customize Linux, work from the GUI
or command line, configure Internet and
intranet services, interoperate with Windows
systems, and create reliable backups.
Performance tuning, security, and virtual-
ization are also covered and real-world
examples help you put the techniques
presented into practice.

• Install and configure popular Linux
distributions, including the latest versions of
Fedora, CentOS, openSUSE, Debian, and
Ubuntu

• Administer Linux servers from the GUI or
from the command line (shell)

• Manage users, permissions, folders, and
native FOSS applications

• Compile, tune, upgrade, and customize the
latest Linux kernel 3.x series

• Work with proc, SysFS, and cgroup file
systems

• Understand and manage the Linux TCP/IP
networking stack and services for both IPv4
and IPv6

• Build robust firewalls, and routers using
Netfilter and Linux

• Create and maintain print, e-mail, FTP,
and web servers

• Use LDAP or NIS for identity management

• Set up and administer DNS, POP3, IMAP3,
and DHCP servers

• Use GlusterFS, NFS, and Samba for sharing
and distributing file system resources

• Explore and implement Linux virtualization
technologies using KVM

Wale Soyinka wears many hats, all fitting to varying degrees.
He is a father, an author, a producer, a system administrator, an
open source evangelist, a network administrator, a hacker, an
entrepreneur, and a chef. Wale has written an extensive library of
Linux administration training materials, including previous
editions of Linux Administration: A Beginner's Guide. He is also the
author of Wireless Network Administration: A Beginner’s Guide.

Cover Design: Jeff Weeks

TM

$40.00 USD

Essential Linux Management Skills Made Easy

Linux Adm
inistration A Beginner’s Guide

Covers Linux kernel 3.x series, B-tree file system
(Btrfs), systemd, GlusterFS, UEFI, KVM, and IPv6

Sixth Edition

Networking/Linux

ALSO AVAILABLE AS AN E-BOOK Follow us on Twitter
@MHComputing

NPL_2010 / Linux Administration A Beginner’s Guide / Wale Soyinka / 176758-4 / Chapter 1

Part I Introduction, Installation,
and Software Management

01-Ch01.indd 1 2/6/12 2:25:05 PM

NPL_2010 / Linux Administration A Beginner’s Guide / Wale Soyinka / 176758-4 / Chapter 1
Blind Folio 2

01-Ch01.indd 2 2/6/12 2:25:05 PM

3

NPL_2010 / Linux Administration A Beginner’s Guide / Wale Soyinka / 176758-4 / Chapter 1

ChaPter 1 technical Summary
of Linux Distributions

01-Ch01.indd 3 2/6/12 2:25:06 PM

NPL_2010 / Linux Administration A Beginner’s Guide / Wale Soyinka / 176758-4 / Chapter 1

 4 Linux Administration: A Beginner’s Guide

Linux has hit the mainstream. Hardly a day goes by without a mention of Linux
(or open source software) in widely read and viewed print or digital media. What
was only a hacker’s toy several years ago has grown up tremendously and is well

known for its stability, performance, and extensibility.
If you need more proof concerning Linux’s penetration, just pay attention to the

frequency with which “Linux” is listed as a desirable and must have skill for technology-
related job postings of Fortune 500 companies, small to medium-sized businesses, tech
start-ups, and government, research, and entertainment industry jobs—to mention a
few. The skills of good Linux system administrators and engineers are highly desirable!

With the innovations that are taking place in different open source projects (such as
K Desktop Environment, GNOME, Unity, LibreOffice, Android, Apache, Samba, Mozilla,
and so on), Linux has made serious inroads into consumer desktop, laptop, tablet, and
mobile markets. This chapter looks at some of the core server-side technologies as they
are implemented in the Linux (open source) world and in the Microsoft Windows Server
world (possibly the platform you are considering replacing with Linux). But before
delving into any technicalities, this chapter briefly discusses some important underlying
concepts and ideas that form the genetic makeup of Linux and Free and Open Source
Software (FOSS).

Linux: The Operating System
Usually, people (mis)understand Linux to be an entire software suite of developer tools,
editors, graphical user interfaces (GUIs), networking tools, and so forth. More formally
and correctly, such software collectively is called a distribution, or distro. The distro is the
entire software suite that makes Linux useful.

So if we consider a distribution everything you need for Linux, what then is Linux
exactly? Linux itself is the core of the operating system: the kernel. The kernel is the
program acting as chief of operations. It is responsible for starting and stopping
other programs (such as editors), handling requests for memory, accessing disks, and
managing network connections. The complete list of kernel activities could easily
fill a chapter in itself, and, in fact, several books documenting the kernel’s internal
functions have been written.

The kernel is a nontrivial program. It is also what puts the Linux badge on all the
numerous Linux distributions. All distributions use essentially the same kernel, so the
fundamental behavior of all Linux distributions is the same.

You’ve most likely heard of the Linux distributions named Red Hat Enterprise
Linux (RHEL), Fedora, Debian, Mandrake, Ubuntu, Kubuntu, openSUSE, CentOS,
Gentoo, and so on, which have received a great deal of press.

Linux distributions can be broadly categorized into two groups. The first category
includes the purely commercial distros, and the second includes the noncommercial
distros, or spins. The commercial distros generally offer support for their distribution—at
a cost. The commercial distros also tend to have a longer release life cycle. Examples of
commercial flavors of Linux-based distros are RHEL and SUSE Linux Enterprise (SLE).

01-Ch01.indd 4 2/6/12 2:25:06 PM

NPL_2010 / Linux Administration A Beginner’s Guide / Wale Soyinka / 176758-4 / Chapter 1

5 Chapter 1: Technical Summary of L inux Distributions

The noncommercial distros, on the other hand, are free. These distros try to
adhere to the original spirit of the open source software movement. They are mostly
community supported and maintained—the community consists of the users and
developers. The community support and enthusiasm can sometimes supersede that
provided by the commercial offerings.

Several of the so-called noncommercial distros also have the backing and support
of their commercial counterparts. The companies that offer the purely commercial
flavors have vested interests in making sure that free distros exist. Some of the
companies use the free distros as the proofing and testing ground for software that
ends up in the commercial spins. Examples of noncommercial flavors of Linux-based
distros are Fedora, openSUSE, Ubuntu, Linux Mint, Gentoo, and Debian. Linux distros
such as Gentoo might be less well known and have not reached the same scale of
popularity as Fedora, openSUSE, and others, but they are out there and in active use
by their respective (and dedicated) communities.

What’s interesting about the commercial Linux distributions is that most of the
programs with which they ship were not written by the companies themselves. Rather,
other people have released their programs with licenses, allowing their redistribution
with source code. By and large, these programs are also available on other variants of
UNIX, and some of them are becoming available under Windows as well. The makers
of the distribution simply bundle them into one convenient and cohesive package that’s
easy to install. In addition to bundling existing software, several of the distribution
makers also develop value-added tools that make their distribution easier to administer
or compatible with more hardware, but the software that they ship is generally written
by others. To meet certain regulatory requirements, some commercial distros try to
incorporate/implement more specific security requirements that the FOSS community
might not care about but that some institutions/corporations do care about.

What Is Open Source Software and GNU All About?
In the early 1980s, Richard Matthew Stallman began a movement within the software
industry. He preached (and still does) that software should be free. Note that by free,
he doesn’t mean in terms of price, but rather free in the same sense as freedom or libre.
This means shipping not just a product, but the entire source code as well. To clarify the
meaning of free software, Stallman was once famously quoted as saying:

 “Free software” is a matter of liberty, not price. To understand the concept, you should
think of “free” as in “free speech,” not as in “free beer.”

Stallman’s policy was, somewhat ironically, a return to classic computing, when
software was freely shared among hobbyists on small computers and provided as part
of the hardware by mainframe and minicomputer vendors. It was not until the late
1960s that IBM considered selling application software. Through the 1950s and most of
the 1960s, IBM considered software as merely a tool for enabling the sale of hardware.

This return to openness was a wild departure from the early 1980s convention of
selling prepackaged software, but Stallman’s concept of open source software was
in line with the initial distributions of UNIX from Bell Labs. Early UNIX systems did

01-Ch01.indd 5 2/6/12 2:25:06 PM

NPL_2010 / Linux Administration A Beginner’s Guide / Wale Soyinka / 176758-4 / Chapter 1

 6 Linux Administration: A Beginner’s Guide

contain full source code. Yet by the late 1970s, source code was typically removed from
UNIX distributions and could be acquired only by paying large sums of money to
AT&T (now SBC). The Berkeley Software Distribution (BSD) maintained a free version,
but its commercial counterpart, BSDi, had to deal with many lawsuits from AT&T until
it could be proved that nothing in the BSD kernel came from AT&T.

Kernel Differences
Each company that sells a Linux distribution of its own will be quick to tell you
that its kernel is better than others. How can a company make this claim? The
answer comes from the fact that each company maintains its own patch set. To
make sure that the kernels largely stay in sync, most companies do adopt patches
that are posted on www.kernel.org, the “Linux Kernel Archives.” Vendors,
however, typically do not track the release of every single kernel version that
is released onto www.kernel.org. Instead, they take a foundation, apply their
custom patches to it, run the kernel through their quality assurance (QA) process,
and then take it to production. This helps organizations have confidence that
their kernels have been sufficiently baked, thus mitigating any perceived risk of
running open source–based operating systems.

The only exception to this rule revolves around security issues. If a security
issue is found with a version of the Linux kernel, vendors are quick to adopt the
necessary patches to fix the problem immediately. A new release of the kernel
with the fixes is often made within a short time (commonly less than 24 hours)
so that administrators who install it can be sure their installations are secure.
Thankfully, exploits against the kernel itself are rare.

So if each vendor maintains its own patch set, what exactly is it patching? This
answer varies from vendor to vendor, depending on each vendor’s target market.
Red Hat, for instance, is largely focused on providing enterprise-grade reliability
and solid efficiency for application servers. This might be different from the
mission of the Fedora team, which is more interested in trying new technologies
quickly, and even more different from the approach of a vendor that is trying to
put together a desktop-oriented or multimedia-focused Linux system.

What separates one distribution from the next are the value-added tools
that come with each one. Asking, “Which distribution is better?” is much like
asking, “Which is better, Coke or Pepsi?” Almost all colas have the same basic
ingredients—carbonated water, caffeine, and high-fructose corn syrup—thereby
giving the similar effect of quenching thirst and bringing on a small caffeine-and-
sugar buzz. In the end, it’s a question of requirements: Do you need commercial
support? Did your application vendor recommend one distribution over another?
Does the software (package) updating infrastructure suit your site’s administrative
style better than another distribution? When you review your requirements, you’ll
find that there is likely a distribution that is geared toward your exact needs.

01-Ch01.indd 6 2/6/12 2:25:06 PM

NPL_2010 / Linux Administration A Beginner’s Guide / Wale Soyinka / 176758-4 / Chapter 1

7 Chapter 1: Technical Summary of L inux Distributions

The idea of giving away source code is a simple one: A user of the software should
never be forced to deal with a developer who might or might not support that user’s
intentions for the software. The user should never have to wait for bug fixes to be
published. More important, code developed under the scrutiny of other programmers
is typically of higher quality than code written behind locked doors. One of the great
benefits of open source software comes from the users themselves: Should they need a
new feature, they can add it to the original program and then contribute it back to the
source so that everyone else can benefit from it.

This line of thinking sprung a desire to release a complete UNIX-like system to
the public, free of license restrictions. Of course, before you can build any operating
system, you need to build tools. And this is how the GNU project was born.

NOTE GNU stands for GNU’s Not UNIX—recursive acronyms are part of hacker humor. If you
don’t understand why it’s funny, don’t worry. You’re still in the majority.

What Is the GNU Public License?
An important thing to emerge from the GNU project is the GNU Public License (GPL).
This license explicitly states that the software being released is free and that no one
can ever take away these freedoms. It is acceptable to take the software and resell it,
even for a profit; however, in this resale, the seller must release the full source code,
including any changes. Because the resold package remains under the GPL, the package
can be distributed for free and resold yet again by anyone else for a profit. Of primary
importance is the liability clause: The programmers are not liable for any damages
caused by their software.

It should be noted that the GPL is not the only license used by open source software
developers (although it is arguably the most popular). Other licenses, such as BSD and
Apache, have similar liability clauses but differ in terms of their redistribution. For
instance, the BSD license allows people to make changes to the code and ship those
changes without having to disclose the added code. (Whereas the GPL requires that the
added code is shipped.) For more information about other open source licenses, check
out www.opensource.org.

Historical Footnote
Many, many moons ago, Red Hat started a commercial offering of its erstwhile
free product (Red Hat Linux). The commercial release gained steam with the Red
Hat Enterprise Linux (RHEL) series. Because the foundation for RHEL is GPL,
individuals interested in maintaining a free version of Red Hat’s distribution have
been able to do so. Furthermore, as an outreach to the community, Red Hat created
the Fedora Project, which is considered the testing grounds for new software before
it is adopted by the RHEL team. The Fedora Project is freely distributed and can be
downloaded from http://fedoraproject.org.

01-Ch01.indd 7 2/6/12 2:25:06 PM

NPL_2010 / Linux Administration A Beginner’s Guide / Wale Soyinka / 176758-4 / Chapter 1

 8 Linux Administration: A Beginner’s Guide

Upstream and Downstream
To help you understand the concept of upstream and downstream components, let’s
start with an analogy. Picture, if you will, a pizza with all your favorite toppings.

The pizza is put together and baked by a local pizza shop. Several things go into
making a great pizza—cheeses, vegetables, flour (dough), herbs, meats, to mention a
few. The pizza shop will often make some of these ingredients in-house and rely on
other businesses to supply other ingredients. The pizza shop will also be tasked with
assembling the ingredients into a complete finished pizza.

Let’s consider one of the most common pizza ingredients—cheese. The cheese
is made by a cheesemaker who makes her cheese for many other industries or
applications, including the pizza shop. The cheesemaker is pretty set in her ways
and has very strong opinions about how her product should be paired with other
food stuffs (wine, crackers, bread, vegetables, and so on). The pizza shop owners,
on the other hand, do not care about other food stuffs—they care only about making
a great pizza. Sometimes the cheesemaker and the pizza shop owners will bump
heads because of differences in opinion and objectives. And at other times they will
be in agreement and cooperate beautifully. Ultimately (and sometimes unbeknown to
them), the pizza shop owners and cheesemaker care about the same thing: producing
the best product that they can.

The pizza shop in our analogy here represents the Linux distributions vendors/
projects (Fedora, Debian, RHEL, openSUSE, and so on). The cheesemaker represents the
different software project maintainers that provide the important programs and tools
(such as the Bourne Again Shell [BASH], GNU Image Manipulation Program [GIMP],
GNOME, KDE, Nmap, and GNU Compiler Collection [GCC]) that are packaged together
to make a complete distribution (pizza). The Linux distribution vendors are referred
to as the downstream component of the open source food chain; the maintainers of the
accompanying different software projects are referred to as the upstream component.

Standards
One argument you hear regularly against Linux is that too many different
distributions exist, and that by having multiple distributions, fragmentation
occurs. The argument opines that this fragmentation will eventually lead to
different versions of incompatible Linuxes.

This is, without a doubt, complete nonsense that plays on “FUD”
(fear, uncertainty, and doubt). These types of arguments usually stem from
a misunderstanding of the kernel and distributions.

Ever since becoming so mainstream, the Linux community understood
that it needed a formal method and standardization process for how certain
things should be done among the numerous Linux spins. As a result, two major
standards are actively being worked on.

01-Ch01.indd 8 2/6/12 2:25:06 PM

NPL_2010 / Linux Administration A Beginner’s Guide / Wale Soyinka / 176758-4 / Chapter 1

9 Chapter 1: Technical Summary of L inux Distributions

The Advantages of Open Source Software
If the GPL seems like a bad idea from the standpoint of commercialism, consider the
surge of successful open source software projects—they are indicative of a system
that does indeed work. This success has evolved for two reasons. First, as mentioned
earlier, errors in the code itself are far more likely to be caught and quickly fixed under
the watchful eyes of peers. Second, under the GPL system, programmers can release
code without the fear of being sued. Without that protection, people might not feel as
comfortable to release their code for public consumption.

NOTE The concept of free software, of course, often begs the question of why anyone would
release his or her work for free. As hard as it might be to believe, some people do it purely for
altruistic reasons and the love of it.

Most projects don’t start out as full-featured, polished pieces of work. They often
begin life as a quick hack to solve a specific problem bothering the programmer at the
time. As a quick-and-dirty hack, the code might not have a sales value. But when this
code is shared and consequently improved upon by others who have similar problems
and needs, it becomes a useful tool. Other program users begin to enhance it with
features they need, and these additions travel back to the original program. The project
thus evolves as the result of a group effort and eventually reaches full refinement. This
polished program can contain contributions from possibly hundreds, if not thousands,
of programmers who have added little pieces here and there. In fact, the original
author’s code is likely to be little in evidence.

The File Hierarchy Standard (FHS) is an attempt by many of the Linux
distributions to standardize on a directory layout so that developers have an easy
time making sure their applications work across multiple distributions without
difficulty. As of this writing, several major Linux distributions have become
completely compliant with this standard.

The Linux Standard Base (LSB) specification is a standards group that specifies
what a Linux distribution should have in terms of libraries and tools.

A developer who assumes that a Linux machine complies only with LSB
and FHS is almost guaranteed to have an application that will work with all
compliant Linux installations. All of the major distributors have joined these
standards groups. This should ensure that all desktop distributions will have a
certain amount of commonality on which a developer can rely.

From a system administrator’s point of view, these standards are interesting but
not crucial to administering a Linux environment. However, it never hurts to learn
more about both. For more information on the FHS, go to their web site at www
.pathname.com/fhs. To find out more about LSB, check out www.linuxbase.org.

01-Ch01.indd 9 2/6/12 2:25:07 PM

NPL_2010 / Linux Administration A Beginner’s Guide / Wale Soyinka / 176758-4 / Chapter 1

 10 Linux Administration: A Beginner’s Guide

There’s another reason for the success of generously licensed software. Any project
manager who has worked on commercial software knows that the real cost of development
software isn’t in the development phase. It’s in the cost of selling, marketing, supporting,
documenting, packaging, and shipping that software. A programmer carrying out a
weekend hack to fix a problem with a tiny, kludged program might lack the interest, time,
and money to turn that hack into a profitable product.

When Linus Torvalds released Linux in 1991, he released it under the GPL. As a result
of its open charter, Linux has had a notable number of contributors and analyzers. This
participation has made Linux strong and rich in features. It is estimated that since the
v.2.2.0 kernel, Torvalds’s contributions represent less than 2 percent of the total code base.

NOTE This might sound strange, but it is true. Contributors to the Linux kernel code include the
companies with competing operating system platforms. For example, Microsoft was one of the
top code contributors to the Linux version 3.0 kernel code base (as measured by the number of
changes or patches relative to the previous kernel version). Even though this might have been for
self-promoting reasons on Microsoft’s part, the fact remains that the open source licensing model
that Linux adopts permits this sort of thing to happen. Everyone and anyone who knows how-to, can
contribute code subject to peer review from which everyone can benefit!

Because Linux is free (as in speech), anyone can take the Linux kernel and other
supporting programs, repackage them, and resell them. A lot of people and corporations
have made money with Linux doing just this! As long as these individuals release
the kernel’s full source code along with their individual packages, and as long as the
packages are protected under the GPL, everything is legal. Of course, this also means
that packages released under the GPL can be resold by other people under other names
for a profit.

In the end, what makes a package from one person more valuable than a
package from another person are the value-added features, support channels, and
documentation. Even IBM can agree to this; it’s how the company made most of its
money from 1930 to 1970, and again in the late 1990s and early 2000s with IBM Global
Services. The money isn’t necessarily in the product alone; it can also be in the services
that go with it.

The Disadvantages of Open Source Software
This section was included to provide a detailed, balanced, and unbiased contrast to the
previous section, which discussed some of the advantages of open source software.

Unfortunately we couldn’t come up with any disadvantages at the time of this
writing! Nothing to see here.

Understanding the Differences Between Windows and Linux
As you might imagine, the differences between Microsoft Windows and the Linux
operating system cannot be completely discussed in the confines of this section.
Throughout this book, topic by topic, you’ll read about the specific contrasts between

01-Ch01.indd 10 2/6/12 2:25:07 PM

NPL_2010 / Linux Administration A Beginner’s Guide / Wale Soyinka / 176758-4 / Chapter 1

11 Chapter 1: Technical Summary of L inux Distributions

the two systems. In some chapters, you’ll find no comparisons, because a major
difference doesn’t really exist.

But before we attack the details, let’s take a moment to discuss the primary
architectural differences between the two operating systems.

Single Users vs. Multiple Users vs. Network Users
Windows was originally designed according to the “one computer, one desk, one user”
vision of Microsoft’s co-founder, Bill Gates. For the sake of discussion, we’ll call this
philosophy “single-user.” In this arrangement, two people cannot work in parallel
running (for example) Microsoft Word on the same machine at the same time. You
can buy Windows and run what is known as Terminal Server, but this requires huge
computing power and extra costs in licensing. Of course, with Linux, you don’t run
into the cost problem, and Linux will run fairly well on just about any hardware.

Linux borrows its philosophy from UNIX. When UNIX was originally developed
at Bell Labs in the early 1970s, it existed on a PDP-7 computer that needed to be shared
by an entire department. It required a design that allowed for multiple users to log into
the central machine at the same time. Various people could be editing documents,
compiling programs, and doing other work at the exact same time. The operating
system on the central machine took care of the “sharing” details so that each user
seemed to have an individual system. This multiuser tradition continues through today
on other versions of UNIX as well. And since Linux’s birth in the early 1990s, it has
supported the multiuser arrangement.

NOTE Most people believe that the term “multitasking” was invented with the advent of Windows 95.
But UNIX has had this capability since 1969! You can rest assured that the concepts included in Linux
have had many years to develop and prove themselves.

Today, the most common implementation of a multiuser setup is to support servers—
systems dedicated to running large programs for use by many clients. Each member of
a department can have a smaller workstation on the desktop, with enough power for
day-to-day work. When someone needs to do something requiring significantly more
processing power or memory, he or she can run the operation on the server.

“But, hey! Windows can allow people to offload computationally intensive work
to a single machine!” you may argue. “Just look at SQL Server!” Well, that position is
only half correct. Both Linux and Windows are indeed capable of providing services
such as databases over the network. We can call users of this arrangement network
users, since they are never actually logged into the server, but rather send requests to
the server. The server does the work and then sends the results back to the user via the
network. The catch in this case is that an application must be specifically written to
perform such server/client duties. Under Linux, a user can run any program allowed
by the system administrator on the server without having to redesign that program.
Most users find the ability to run arbitrary programs on other machines to be of
significant benefit.

01-Ch01.indd 11 2/6/12 2:25:07 PM

NPL_2010 / Linux Administration A Beginner’s Guide / Wale Soyinka / 176758-4 / Chapter 1

 12 Linux Administration: A Beginner’s Guide

The Monolithic Kernel and the Micro-Kernel
Two forms of kernels are used in operating systems. The first, a monolithic kernel
provides all the services the user applications need. The second, a micro-kernel is much
more minimal in scope and provides only the bare minimum core set of services
needed to implement the operating system.

Linux, for the most part, adopts the monolithic kernel architecture; it handles
everything dealing with the hardware and system calls. Windows, on the other hand,
works off a micro-kernel design. The Windows kernel provides a small set of services
and then interfaces with other executive services that provide process management,
input/output (I/O) management, and other services. It has yet to be proved which
methodology is truly the best way.

Separation of the GUI and the Kernel
Taking a cue from the Macintosh design concept, Windows developers integrated
the GUI with the core operating system. One simply does not exist without the other.
The benefit with this tight coupling of the operating system and user interface is
consistency in the appearance of the system.

Although Microsoft does not impose rules as strict as Apple’s with respect to the
appearance of applications, most developers tend to stick with a basic look and feel
among applications. One reason this is dangerous, however, is that the video card
driver is now allowed to run at what is known as “Ring 0” on a typical x86 architecture.
Ring 0 is a protection mechanism—only privileged processes can run at this level, and
typically user processes run at Ring 3. Because the video card is allowed to run at Ring
0, it could misbehave (and it does!), and this can bring down the whole system.

On the other hand, Linux (like UNIX in general) has kept the two elements—user
interface and operating system—separate. The X Window System interface is run as
a user-level application, which makes it more stable. If the GUI (which is complex
for both Windows and Linux) fails, Linux’s core does not go down with it. The GUI
process simply crashes, and you get a terminal window. The X Window System also
differs from the Windows GUI in that it isn’t a complete user interface. It defines only
how basic objects should be drawn and manipulated on the screen.

One of the most significant features of the X Window System is its ability to display
windows across a network and onto another workstation’s screen. This allows a
user sitting on host A to log into host B, run an application on host B, and have all of
the output routed back to host A. It is possible for two people to be logged into the
same machine, running a Linux equivalent of Microsoft Word (such as OpenOffice or
LibreOffice) at the same time.

In addition to the X Window System core, a window manager is needed to create
a useful environment. Linux distributions come with several window managers,
including the heavyweight and popular GNOME and KDE environments (both of
which are available on other variants of UNIX as well). Both GNOME and KDE offer
an environment that is friendly, even to the casual Windows user. If you’re concerned

01-Ch01.indd 12 2/6/12 2:25:07 PM

NPL_2010 / Linux Administration A Beginner’s Guide / Wale Soyinka / 176758-4 / Chapter 1

13 Chapter 1: Technical Summary of L inux Distributions

with speed, you can look into the F Virtual Window Manager (FVWM), Lightweight X11
Desktop Environment (LXDE), and Xfce window managers. They might not have all the
glitz of KDE or GNOME, but they are really fast and lightweight.

So which approach is better—Windows or Linux—and why? That depends on what
you are trying to do. The integrated environment provided by Windows is convenient
and less complex than Linux, but out of the box, Windows lacks the X Window System
feature that allows applications to display their windows across the network on another
workstation. The Windows GUI is consistent, but it cannot be easily turned off, whereas
the X Window System doesn’t have to be running (and consuming valuable hardware
resources) on a server.

NOTE With its latest server family (Windows Server 8 and newer), Microsoft has somewhat
decoupled the GUI from the base operating system (OS). You can now install and run the server in
a so-called “Server Core” mode. Windows Server 8 Server Core can run without the usual Windows
GUI. Managing the server in this mode is done via the command line or remotely from a regular
system, with full GUI capabilities.

The Network Neighborhood
The native mechanism for Windows users to share disks on servers or with each
other is through the Network Neighborhood. In a typical scenario, users attach to a
share and have the system assign it a drive letter. As a result, the separation between
client and server is clear. The only problem with this method of sharing data is
more people-oriented than technology-oriented: People have to know which servers
contain which data.

With Windows, a new feature borrowed from UNIX has also appeared: mounting. In
Windows terminology, it is called reparse points. This is the ability to mount a CD-ROM
drive into a directory on your C drive. The concept of mounting resources (optical
media, network shares, and so on) in Linux/UNIX might seem a little strange, but as
you get used to Linux, you’ll understand and appreciate the beauty in this design. To
get anything close to this functionality in Windows, you have to map a network share
to a drive letter.

Right from inception, Linux was built with support for the concept of mounting,
and as a result, different types of file systems can be mounted using different protocols
and methods. For example, the popular Network File System (NFS) protocol can be
used to mount remote shares/folders and make them appear local. In fact, the Linux
Automounter can dynamically mount and unmount different file systems on an as-
needed basis.

A common example of mounting partitions under Linux involves mounted home
directories. The user’s home directories can reside on a remote server, and the client
systems can automatically mount the directories at boot time. So the /home directory exists
on the client, but the /home/username directory (and its contents) can reside on the server.

01-Ch01.indd 13 2/6/12 2:25:07 PM

NPL_2010 / Linux Administration A Beginner’s Guide / Wale Soyinka / 176758-4 / Chapter 1

 14 Linux Administration: A Beginner’s Guide

Under Linux NFS and other Network File Systems, users never have to know
server names or directory paths, and their ignorance is your bliss. No more questions
about which server to connect to. Even better, users need not know when the server
configuration must change. Under Linux, you can change the names of servers and
adjust this information on client-side systems without making any announcements or
having to reeducate users. Anyone who has ever had to reorient users to new server
arrangements will appreciate the benefits and convenience of this.

Printing works in much the same way. Under Linux, printers receive names that are
independent of the printer’s actual host name. (This is especially important if the printer
doesn’t speak Transmission Control Protocol/Internet Protocol, or TCP/IP.) Clients point
to a print server whose name cannot be changed without administrative authorization.
Settings don’t get changed without you knowing it. The print server can then redirect
all print requests as needed. The unified interface that Linux provides will go a long
way toward improving what might be a chaotic printer arrangement in your network
environment. This also means you don’t have to install print drivers in several locations.

The Registry vs. Text Files
Think of the Windows Registry as the ultimate configuration database—thousands
upon thousands of entries, only a few of which are completely documented.

“What? Did you say your Registry got corrupted?” <maniacal laughter> “Well, yes,
we can try to restore it from last night’s backups, but then Excel starts acting funny and
the technician (who charges $65 just to answer the phone) said to reinstall.…”

In other words, the Windows Registry system can be at best, difficult to manage.
Although it’s a good idea in theory, most people who have serious dealings with it
don’t emerge from battling it without a scar or two.

Linux does not have a registry, and this is both a blessing and a curse. The blessing
is that configuration files are most often kept as a series of text files (think of the
Windows .ini files). This setup means you’re able to edit configuration files using the
text editor of your choice rather than tools such as regedit. In many cases, it also
means you can liberally comment those configuration files so that six months from
now you won’t forget why you set up something in a particular way. Most software
programs that are used on Linux platforms store their configuration files under the
/etc directory or one of its subdirectories. This convention is widely understood and
accepted in the FOSS world.

The curse of a no-registry arrangement is that there is no standard way of writing
configuration files. Each application can have its own format. Many applications are
now coming bundled with GUI-based configuration tools to alleviate some of these
problems. So you can do a basic setup easily, and then manually edit the configuration
file when you need to do more complex adjustments.

In reality, having text files hold configuration information usually turns out to
be an efficient method. Once set, they rarely need to be changed; even so, they are
straight text files and thus easy to view when needed. Even more helpful is that it’s

01-Ch01.indd 14 2/6/12 2:25:07 PM

NPL_2010 / Linux Administration A Beginner’s Guide / Wale Soyinka / 176758-4 / Chapter 1

15 Chapter 1: Technical Summary of L inux Distributions

easy to write scripts to read the same configuration files and modify their behavior
accordingly. This is especially helpful when automating server maintenance operations,
which is crucial in a large site with many servers.

Domains and Active Directory
If you’ve been using Windows long enough, you might remember the Windows NT
domain controller model. If twinges of anxiety ran through you when reading the
last sentence, you might still be suffering from the shell shock of having to maintain
Primary Domain Controllers (PDCs), Backup Domain Controllers (BDCs), and their
synchronization.

Microsoft, fearing revolt from administrators all around the world, gave up on
the Windows NT model and created Active Directory (AD). The idea behind AD was
simple: Provide a repository for any kind of administrative data, whether it is user
logins, group information, or even just telephone numbers. In addition, provide a
central place to manage authentication and authorization for a domain. The domain
synchronization model was also changed to follow a Domain Name System (DNS)–style
hierarchy that has proved to be far more reliable. NT LAN Manager (NTLM) was also
dropped in favor of Kerberos. (Note that AD is still somewhat compatible with NTLM.)

While running dcpromo might not be anyone’s idea of a fun afternoon, it is easy to
see that AD works pretty well.

Out of the box, Linux does not use a tightly coupled authentication/authorization
and data store model the way that Windows does with AD. Instead, Linux uses an
abstraction model that allows for multiple types of stores and authentication schemes
to work without any modification to other applications. This is accomplished through
the Pluggable Authentication Modules (PAM) infrastructure and the name resolution
libraries that provide a standard means of looking up user and group information for
applications. It also provides a flexible way of storing that user and group information
using a variety of schemes.

For administrators looking to Linux, this abstraction layer can seem peculiar
at first. However, consider that you can use anything from flat files, to Network
Information Service (NIS), to Lightweight Directory Access Protocol (LDAP) or
Kerberos for authentication. This means you can pick the system that works best for
you. For example, if you have an existing UNIX infrastructure that uses NIS, you can
simply make your Linux systems plug into that. On the other hand, if you have an
existing AD infrastructure, you can use PAM with Samba or LDAP to authenticate
against the domain. Use Kerberos? No problem. And, of course, you can choose to
make your Linux system not interact with any external authentication system. In
addition to being able to tie into multiple authentication systems, Linux can easily
use a variety of tools, such as OpenLDAP, to keep directory information centrally
available as well.

01-Ch01.indd 15 2/6/12 2:25:07 PM

NPL_2010 / Linux Administration A Beginner’s Guide / Wale Soyinka / 176758-4 / Chapter 1

 16 Linux Administration: A Beginner’s Guide

Summary
In this chapter, we offered an overview of what Linux is and what it isn’t. We discussed
a few of the guiding principles, ideas, and concepts that govern open source software
and Linux by extension. We ended the chapter by covering some of the similarities
and differences between core technologies in the Linux and Microsoft Windows Server
worlds. Most of these technologies and their practical uses are dealt with in greater
detail in the rest of this book.

If you are so inclined and would like to get more detailed information on the internal
workings of Linux itself, you might want to start with the source code. The source code
can be found at www.kernel.org. It is, after all, open source!

01-Ch01.indd 16 2/6/12 2:25:07 PM

